Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Food Drug Anal ; 29(4): 559-580, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1579160

ABSTRACT

The recent COVID-19 outbreak caused by SARS-CoV-2 virus has sparked a new spectrum of investigations, research and studies in multifarious directions. Efforts are being made around the world for discovery of effective vaccines/drugs against COVID-19. In this context, Ayurveda, an alternative traditional system of medicine in India may work as an adjuvant therapy in compromised patients. We selected 40 herbal leads on the basis of their traditional applications. The phytomolecules from these leads were further screened through in-silico molecular docking against two main targets of SARS-CoV-2 i.e. the spike protein (S; structural protein) and the main protease (MPRO; non-structural protein). Out of the selected 40, 12 phytomolecules were able to block or stabilize the major functional sites of the main protease and spike protein. Among these, Ginsenoside, Glycyrrhizic acid, Hespiridin and Tribulosin exhibited high binding energy with both main protease and spike protein. Etoposide showed good binding energy only with Spike protein and Teniposide had high binding energy only with main protease. The above phytocompounds showed promising binding efficiency with target proteins indicating their possible applications against SARS-CoV-2. However, these findings need to be validated through in vitro and in vivo experiments with above mentioned potential molecules as candidate drugs for the management of COVID-19. In addition, there is an opportunity for the development of formulations through different permutations and combinations of these phytomolecules to harness their synergistic potential.


Subject(s)
COVID-19 Drug Treatment , Medicine, Ayurvedic , Plant Preparations , SARS-CoV-2 , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Plant Preparations/pharmacology , Plants, Medicinal , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus
2.
FEBS Open Bio ; 12(1): 285-294, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540045

ABSTRACT

Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti-coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS-CoV-2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell-based SARS-CoV-2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , COVID-19/prevention & control , Plant Preparations/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , COVID-19/virology , Chlorocebus aethiops , Coronavirus M Proteins/antagonists & inhibitors , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Preparations/chemistry , Plant Preparations/metabolism , Protein Binding , Protein Conformation , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Stephania/chemistry , Vero Cells
3.
J Ethnopharmacol ; 283: 114738, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1466608

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal importance and potential activity of Siddha herbal formulations have proved over several centuries against a wide range of causative agents as Influenza, Dengue, Chikungunya, and Tuberculosis. The traditional medicine system of Siddha is a valuable therapeutic approach for treating viral respiratory infections like Coronavirus disease 2019 (COVID-19) and can be effectively employed to target the host response and preventive care to boost the immune system. Kaba Sura Kudineer (KSK), an official polyherbal formulation has been used in Siddha traditional medicine for centuries. However, the role of KSK in regulating inflammation and the underlying molecular mechanisms has remained elusive. AIM OF THE STUDY: The goal of this study was to evaluate the anti-inflammatory effect of KSK using lipopolysaccharide (LPS) stimulated RAW 264.7 murine macrophage cells. MATERIALS AND METHODS: Raw 264.7 murine macrophage cells were used for this study. The Inflammatory mediators and cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The NF-κB nulcear translocation and protein expression of iNOS, COX-2 was analyzed with westernblot. RESULTS: KSK supplementation decreased LPS mediated TLR-4 production and secretion of pro-inflammatory mediators and cytokines including IL-6, TNF-α, COX-2 and PGE-2. Moreover, it inhibited the production of nitric oxide (NO) and thereby inhibited the expression of iNOS in the cell. The Western blot analysis further confirmed that KSK strongly prevented the LPS-induced degradation of IκB which is normally required for the activation of NF-κB and hereby suppressed nuclear translocation of NF-κB. The protein expression of iNOS, COX-2 was significantly decreased with the presence of KSK treatment. Results suggested that KSK manipulates its anti-inflammatory effects mainly through blocking the TLR mediated NF-κB signal transduction pathways. CONCLUSIONS: Together, this study has proven that KSK could be a potential therapeutic drug for alleviating excessive inflammation in many inflammation-associated diseases like COVID-19.


Subject(s)
COVID-19 Drug Treatment , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Macrophages/drug effects , Medicine, Ayurvedic , Plant Preparations/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Dietary Supplements , Mice , Pharmaceutical Preparations , Phytotherapy , Plant Preparations/pharmacology , RAW 264.7 Cells , SARS-CoV-2
4.
Biomed Pharmacother ; 140: 111764, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1275156

ABSTRACT

Cocoa beans contain antioxidant molecules with the potential to inhibit type 2 coronavirus (SARS-CoV-2), which causes a severe acute respiratory syndrome (COVID-19). In particular, protease. Therefore, using in silico tests, 30 molecules obtained from cocoa were evaluated. Using molecular docking and quantum mechanics calculations, the chemical properties and binding efficiency of each ligand was evaluated, which allowed the selection of 5 compounds of this series. The ability of amentoflavone, isorhoifolin, nicotiflorin, naringin and rutin to bind to the main viral protease was studied by means of free energy calculations and structural analysis performed from molecular dynamics simulations of the enzyme/inhibitor complex. Isorhoifolin and rutin stand out, presenting a more negative binding ΔG than the reference inhibitor N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N~1~-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide (N3). These results are consistent with high affinities of these molecules for the major SARS-CoV-2. The results presented in this paper are a solid starting point for future in vitro and in vivo experiments aiming to validate these molecules and /or test similar substances as inhibitors of SARS-CoV-2 protease.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cacao/chemistry , Peptide Hydrolases/metabolism , Plant Preparations/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Humans , Ligands , Molecular Dynamics Simulation
5.
Tohoku J Exp Med ; 254(2): 71-80, 2021 06.
Article in English | MEDLINE | ID: covidwho-1262562

ABSTRACT

Olfactory disorders are one of the characteristic symptoms of the coronavirus disease of 2019 (COVID-19), which causes infection and inflammation of the upper and lower respiratory tract. To our knowledge, there are no treatments for COVID-19-related olfactory disorder. Here, we report five olfactory disorder cases in COVID-19, treated using the Japanese traditional (Kampo) medicine, kakkontokasenkyushin'i. We treated five patients with mild COVID-19 at an isolation facility using Kampo medicine, depending on their symptoms. Patients with the olfactory disorder presented with a blocked nose, nasal discharge or taste impairment. Physical examination using Kampo medicine showed similar findings, such as a red tongue with red spots and sublingual vein congestion, which presented as blood stasis and inflammation; thus, we prescribed the Kampo medicine, kakkontokasenkyushin'i. After administration, the numeric rating scale scores of the smell impairment improved within 3 days from 9 to 3 in case 1, from 10 to 0 in case 2, from 9 to 0 in case 3, from 5 to 0 in case 4, and from 9 to 0 within 5 days in case 5. Following the treatment, other common cold symptoms were also alleviated. Kakkontokasenkyushin'i can be used for treating nasal congestion, rhinitis, and inflammation in the nasal mucosa. The olfactory disorder in COVID-19 has been reportedly associated with inflammation and congestion, especially in the olfactory bulb and olfactory cleft. Kakkontokasenkyushin'i may be one of the treatment alternatives for the olfactory disorder with rhinitis in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Medicine, Kampo/methods , Olfaction Disorders/drug therapy , Plant Preparations/therapeutic use , Adolescent , Adult , COVID-19/complications , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Female , Humans , Japan , Male , Olfaction Disorders/complications , Olfaction Disorders/virology , Plant Preparations/chemistry , Plant Preparations/pharmacology , Rhinitis/complications , Rhinitis/drug therapy , Rhinitis/virology , SARS-CoV-2/physiology , Smell/drug effects , Treatment Outcome , Young Adult
6.
Phytother Res ; 35(8): 4297-4308, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1162958

ABSTRACT

The new severe acute respiratory syndrome coronavirus (SARS-CoV-2) recently emerged as a worrying pandemic, with many confirmed cases and deaths globally. Therefore, there is a clear need for identifying effective therapeutic options and a review of secondary metabolites related to Brazilian herbal medicines was performed as a strategy for the discovery of new antiviral agents. To confirm this potential, an in silico screening of the identified compounds identified was also evaluated. The review was performed by the PubMed database and the selected natural compounds were subjected to in silico analysis such as QSAR, molecular docking and ADMET. 497 secondary metabolites were identified from 23 species. The in silico assays indicated 19 potential anti-SARS-CoV-2 compounds, being triterpenes and phenolic compounds. The indicated compounds showed a high affinity with proteins considered as the main molecular targets against SARS-CoV-2 and parameters indicated low toxicity. In addition to Brazilian medicinal plants, these compounds can be found in other species and they can be a base for the synthesis of other anti-COVID-19 drugs. Therefore, this review is important to conduct researches that address the emerging need for drugs in COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Plant Preparations , Plants, Medicinal , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Phytochemicals/pharmacology , Plant Preparations/pharmacology , Plants, Medicinal/chemistry
7.
Expert Rev Clin Pharmacol ; 14(5): 623-633, 2021 May.
Article in English | MEDLINE | ID: covidwho-1132334

ABSTRACT

INTRODUCTION: The COVID-19 global pandemic is a public health emergency due to its high virulence and mortality. Many vaccine development studies at clinical trials are currently conducted to combat SARS-CoV-2. Plants are a rich source of phytochemicals with different biological activities, including antiviral activities, which are the focus of many studies. AREAS COVERED: This review shows compounds of traditional plants listed on RENISUS list have therapeutic properties against SARS-CoV-2 targets. EXPERT OPINION: The rise of new variants, more pathogenic and virulent, impacts in the increase of mortality from SARS-CoV-2 infection, and thus, the control of the outbreaks of disease remains a global challenge. Other's drug and vaccines development is an essential element in controlling SARS-COV-2. Therefore, it is imperative that approach to tackle this pandemic has to be solidly evidence-informed. It should be noticed that the immune system does play critical roles in fighting viruses. Studies show that T cells levels decreased continuously as the disease progressed. T cell-mediated cellular immune response, probably by immunological memory, is essential for direct virus eradication after infection whilst B cells functions in producing antibodies that neutralize virus.But, have distinct patterns of T cell response exist in different patients, suggesting the possibility of distinct clinical approaches. Efforts are concentrated to elucidate the underlying immunological mechanisms in SARS-CoV-2 pathogenesis and progression for better design of diagnostic, therapeutic and preventive strategies. We seek to identify biomolecules with the potential to act in biomarkers that predict how severe the disease can get. But it is important to warn that the plants that produce the compounds mentioned here should not be used without a physician prescription. Finally, we speculate that these compounds may eventually attract the attention of physicians and researchers to perform tests in specific contexts of SARS-CoV-2 infection, and if they show positive results, be tested in Clinical trials.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Plants/chemistry , SARS-CoV-2/drug effects , Biological Products/chemistry , Phytotherapy , Plant Preparations/chemistry , Plant Preparations/pharmacology
8.
Phytother Res ; 35(6): 3013-3031, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-996303

ABSTRACT

In times of health crisis, including the current COVID-19 pandemic, the potential benefit of botanical drugs and supplements emerges as a focus of attention, although controversial efficacy claims are rightly a concern. Phytotherapy has an established role in everyday self-care and health care, but, since botanical preparations contain many chemical constituents rather than single compounds, challenges arise in demonstrating efficacy and safety. However, there is ample traditional, empirical, and clinical evidence that botanicals can offer some protection and alleviation of disease symptoms as well as promoting general well-being. Newly emerging viral infections, specifically COVID-19, represent a unique challenge in their novelty and absence of established antiviral treatment or immunization. We discuss here the roles and limitations of phytotherapy in helping to prevent and address viral infections, especially regarding their effects on immune response. Botanicals with a documented immunomodulatory, immunostimulatory, and antiinflammatory effects include adaptogens, Boswellia spp., Curcuma longa, Echinacea spp., Glycyrrhiza spp., medicinal fungi, Pelargonium sidoides, salicylate-yielding herbs, and Sambucus spp. We further provide a clinical perspective on applications and safety of these herbs in prevention, onset, progression, and convalescence from respiratory viral infections.


Subject(s)
COVID-19 Drug Treatment , Plant Preparations/pharmacology , Plants, Medicinal/chemistry , Dietary Supplements , Humans , Immunity/drug effects , Phytotherapy/methods , SARS-CoV-2/drug effects
9.
Trials ; 21(1): 841, 2020 Oct 09.
Article in English | MEDLINE | ID: covidwho-841716

ABSTRACT

OBJECTIVES: We investigate the effects of Ginger, compared to the usual therapeutic regimen on clinical manifestations and paraclinical features in patients with confirmed COVID-19 that are moderately ill. TRIAL DESIGN: This is a single center, randomized, double-blind, placebo-controlled clinical trial with parallel group design. PARTICIPANTS: Inclusion criteria: 1. Patients admitted to Severe Acute Respiratory Syndrome (SARS) Departments at Shahid Mohammadi Hospital, Bandar Abbas, Iran 2. Age ≥18 years (weight ≥35 kg) 3. Hospitalized ≤48 hours 4. Confirmed SARS-CoV-2 diagnosis (Positive polymerase chain reaction (PCR)) 5. Moderate pneumonia and lung involvement in imaging 6. Signing informed consent and willingness of study participant to accept randomization to any assigned treatment arm Exclusion criteria: 1. Underlying diseases, including heart disease, chronic hypertension, severe renal failure, severe liver failure, and thyroid disorders 2. Use of warfarin, selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs), diuretics, corticosteroids, and antiarrhythmic drugs 3. Severe and critical pneumonia 4. History of known allergy to Ginger 5. Pregnancy and breastfeeding INTERVENTION AND COMPARATOR: Intervention group: The standard treatment regimen for COVID-19 along with Ginger-based herbal tablets (Vomigone ®, Dineh Pharmaceutical Company, Iran) at a dose of 1000 mg three times a day for a period of seven days. CONTROL GROUP: The standard treatment for COVID-19 based on the Iranian Ministry of Health and Medical Education's protocol, along with Vomigone-like placebo tablets (Dineh Pharmaceutical Company, Iran) at a dose of two tablets three times a day for a period of seven days. MAIN OUTCOMES: The primary outcome is recovery rate of clinical symptoms, including fever, dry cough, tiredness, and GI symptoms as well as paraclinical features, including thrombocytopenia, lymphocytopenia, and C-reactive protein within seven days of randomization. Time to improvement of clinical and paraclinical features along with the incidence of serious adverse events are the secondary outcomes within seven days of randomization. RANDOMIZATION: An interactive web-based system will be used to allocate eligible participants, based on the inclusion and exclusion criteria, to one of the two study arms (in a 1:1 ratio) using block randomization. BLINDING (MASKING): All study participants, research coordinators, clinicians, nurses, and investigators will be blinded to the group assignment. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 84 participants will be randomized into two groups of 42 patients. TRIAL STATUS: The protocol is Version 1.0, May 23, 2020. Recruitment began July 21, 2020, and is anticipated to be completed by October 30, 2020. TRIAL REGISTRATION: This clinical trial has been registered in the Iranian Registry of Clinical Trials (IRCT). The registration number is " IRCT20200506047323N1 ". Registration date is 23 May 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Coronavirus Infections , Ginger , Pandemics , Phytotherapy/methods , Plant Preparations/pharmacology , Pneumonia, Viral , Symptom Assessment/methods , Administration, Oral , Adult , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Double-Blind Method , Drug Monitoring/methods , Female , Humans , Iran , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severity of Illness Index , Tablets , COVID-19 Drug Treatment
10.
Phytomedicine ; 85: 153361, 2021 May.
Article in English | MEDLINE | ID: covidwho-813822

ABSTRACT

Current scenario depicts that world has been clenched by COVID-19 pandemic. Inevitably, public health and safety measures could be undertaken in order to dwindle the infection threat and mortality. Moreover, to overcome the global menace and drawing out world from moribund stage, there is an exigency for social distancing and quarantines. Since December, 2019, coronavirus, SARS-CoV-2 (COVID-19) have came into existence and up till now world is still in the state of shock.At this point of time, COVID-19 has entered perilous phase, creating havoc among individuals, and this has been directly implied due to enhanced globalisation and ability of the virus to acclimatize at all conditions. The unabated transmission is due to lack of drugs, vaccines and therapeutics against this viral outbreak. But research is still underway to formulate the vaccines or drugs by this means, as scientific communities are continuously working to unravel the pharmacologically active compounds that might offer a new insight for curbing infections and pandemics. Therefore, the topical COVID-19 situation highlights an immediate need for effective therapeutics against SARS-CoV-2. Towards this effort, the present review discusses the vital concepts related to COVID-19, in terms of its origin, transmission, clinical aspects and diagnosis. However, here, we have formulated the novel concept hitherto, ancient means of traditional medicines or herbal plants to beat this pandemic.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Immune System/drug effects , Plant Preparations/pharmacology , Adjuvants, Immunologic/pharmacology , Dietary Supplements , Humans , Medicine, Ayurvedic , Medicine, Chinese Traditional , Pandemics , Phytotherapy , Plants, Medicinal/chemistry , SARS-CoV-2
11.
Phytomedicine ; 85: 153311, 2021 May.
Article in English | MEDLINE | ID: covidwho-733664

ABSTRACT

BACKGROUND: Starting December 2019, mankind faced an unprecedented enemy, the COVID-19 virus. The world convened in international efforts, experiences and technologies in order to fight the emerging pandemic. Isolation, hygiene measure, diagnosis, and treatment are the most efficient ways of prevention and intervention nowadays. The health organizations and global care systems screened the available resources and offered recommendations of approved and proposed medications. However, the search for a specific selective therapy or vaccine against COVID-19 remains a challenge. METHODS: A literature search was performed for the screening of natural and derived bio-active compounds which showed potent antiviral activity against coronaviruses using published articles, patents, clinical trials website (https://clinicaltrials.gov/) and web databases (PubMed, SCI Finder, Science Direct, and Google Scholar). RESULTS: Through the screening for natural products with antiviral activities against different types of the human coronavirus, extracts of Lycoris radiata (L'Hér.), Gentiana scabra Bunge, Dioscorea batatas Decne., Cassia tora L., Taxillus chinensis (DC.), Cibotium barometz L. and Echinacea purpurea L. showed a promising effect against SARS-CoV. Out of the listed compound Lycorine, emetine dihydrochloride hydrate, pristimerin, harmine, conessine, berbamine, 4`-hydroxychalcone, papaverine, mycophenolic acid, mycophenolate mofetil, monensin sodium, cycloheximide, oligomycin and valinomycin show potent activity against human coronaviruses. Additionally, it is worth noting that some compounds have already moved into clinical trials for their activity against COVID-19 including fingolimod, methylprednisolone, chloroquine, tetrandrine and tocilizumab. CONCLUSION: Natural compounds and their derivatives could be used for developing potent therapeutics with significant activity against SARS-COV-2, providing a promising frontline in the fighting against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , COVID-19 Vaccines , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Molecular Structure , Pandemics , Plant Preparations/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL